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Theoretical calculation of creep and relaxation 
of polycrystals, and stress redistribution among 
constituent grains 
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New Jersey 08903, USA 

Taking into account both transient and steady creep of slip systems in the grain, a theoretical 
method is developed to determine the overall creep and relaxation behaviour of polycrystals 
and, by which, the accompanying stress and strain distribution among the constituent grains 
can also be evaluated. This method extends the incremental self-consistent relation for grain 
interactions to the total form, and is further complemented with an iterative computational 
process. It is primarily intended for the calculation of creep under a constant stress, relaxation 
under a constant strain, and a combination of both. While maintaining almost the same degree 
of accuracy, this new method, as compared to the incremental one, is far more effective. Its 
theoretical predictions on the creep and relaxation of a 2618-T61 aluminium are shown to be 
in good accord with experiments. The heterogeneous nature of creep deformation and stress 
distribution among the constituent grains are also displayed for several selected grain orienta- 
tions. Finally some implications and limitations of the model are assessed. 

1. In troduct ion  
When a polycrystalline metal is subjected to a con- 
stant stress at elevated temperature, creep deforma- 
tion takes places. While ostensibly deforming at a 
constant stress, stress distribution inside the polycrys- 
tal, primarily due to the variation of  grain orienta- 
tions, is highly heterogeneous. The truth is that the 
more favourably oriented grains will deform more 
extensively than the less favourably oriented ones, and 
the stress relieved by the former group will have to be 
carried over by the latter. The process of stress redis- 
tribution is time-dependent. As the creep activity of a 
constituent grain depends directly on its local stress, it 
is essential that such a distribution be characterized. 
Then the creep behaviour of the constituent grains 
and of the aggregate can be determined accordingly. 

Instead of being submitted to a constant stress, the 
polycrystal may be subjected to a fixed total strain, 
resulting in a state of stress relaxation. The latter appar- 
ently occurs as a consequence of creep deformation. 
As creep caused by the initial stress in the constituent 
grains will lead to an increase in overall strain, the 
external stress has to be reduced continuously to com- 
pensate for such an increase. Both creep deforma- 
tion and stress relaxation are not uniform within the 
aggregate, and we again have an inhomogeneous state 
of stress and strain among the constituent grains 
during the relaxation process. 

Directed towards the solution of these problems, we 
present a simple method to evaluate the correspond- 
ing stress redistribution among the constituent grains, 
and from these to calculate the history of creep defor- 
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mation and stress relaxation for both the grains and 
the aggregate. Since a material element in service may 
encounter "a simultaneous creep and relaxation, the 
consideration will also be extended to such a simul- 
taneous process, say combined creep in torsion and 
relaxation in tension. The proposed method stems 
from a general "incremental" method suggested by 
Weng [1], and is primarily intended for the cases 
of a polycrystal under the influence of c ons tan t  

stress and/or total strain as stated above. The ration- 
ale for this development is two-fold. First, the time 
increment adopted in the incremental method, to 
ensure numerical stability, has to be sufficiently 
small and this usually results in long computations. 
For instance in a recent study [2] the second writer 
had to calculate 3% of creep strain incrementally 
for aluminium, and it took more than 2000 steps. 
Keeping in mind that this was done for a polycrystal 
which consists of a large number of  constituent 
grains, and each grain further possesses twelve slip 
systems, the computation was quite formidable 
indeed, Secondly, as creep and relaxation under con- 
stant stress or strain are frequently encountered in 
fundamental theory and experiment, there is an urgent 
need to develop a more efficient method. In con- 
trast to the incremental method, the new one is 
developed in a "total"  form at a given time. This 
idea grew out of the observations that, within the 
range of transient and steady creep, both creep and 
relaxation curves are monotonic, and may be well 
represented by three to five points. The new method 
thus aims at calculating the total creep strain and/or 
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relaxed stress at time t, without going through the 
small incremental steps. 

2. Modi f icat ion of the incremental  
self-consistent relation to the total 
form 

Our first task is to establish the required principle of 
stress redistribution among the constituent grains. 
With the aid of Eshelby's [3] solution for a spherical 
inclusion, this can be conveniently accomplished by 
the self-consistent relation. Let the stress and creep 
strain of a constituent grain (spherical inclusion) be 
denoted by au(t) and ~(t), and those of the poly- 
crystalline aggregate (surrounding matrix) by the 
corresponding barred (averaged) quantities #o(t) and 
~(t), respectively. We now modify the incremental 
self-consistent relation to the total form, and, for 
clarity, this will be carried out for creep under a con- 
stant stress, relaxation under a constant total strain, 
and simultaneous creep in torsion and relaxation in 
tension, in turn. 

2.1. Creep u n d e r  a c o n s t a n t  s tress  
During an increment of creep, creep strains ds,~ and d~. 
are developed in both the constituent grain and the 
aggregate, and this results in a stress redistribution. By 
identifying such a deformation as a truely "stress- 
free" process in the sense of Eshelby [3], the stress 
variation in the inclusion was shown to be [1] 

da~ = - 2 # ( 1  - 9 ) ( d ~ -  d~),  (1) 

where # is the elastic modulus and, in terms of 
Poisson's ratio v, fl = 2(4 - 5v)/15(1 - v). For sim- 
plicity the elastic property of the constituent grain is 
taken to be isotropic, and within the low and inter- 
mediate temperature range, creep deformation involves 
no significant volume change. 

For a randomly oriented polycrystal, the creep 
strain is simply the average taken over all, say N, grain 
orientations; one has 

1 ~ (p) 
d~  N d ~ ,~. (2) 

p = l  

Obviously when Equation 1 is considered for all grains 
their sum will vanish, thereby satisfying the require- 
ment of self-consistency. 

Recognizing that the total strain consists of elastic 
and creep strains and that the perturbed elastic strain 
associated with such a process is fl(de,~ - d~}), the 
increase of total strain is given by 

de,j = dg} 

for a constituent grain, 
simply 

d~ U 

+ fl(de} - d~,~), (3) 

and, for the aggregate, it is 

= d~}. 

Since the externally applied stress ~,7 is held con- 
stant, upon integration one has 

ao(t) = a,~ -- 2#(1 -- fl)[G~.(t) -- ~}(t)] 

1 N (p) 

p - -  =1 

where go(0) is the initial strain corresponding to ~u. It 
is evident from Equation 5 that the stress of a more 
favourably oriented grain (~} > ~.) will continue to 
decrease whereas that of a lesser one will continue to 
increase in the course of creep deformation. This self- 
consistent relation, with creep strains replaced by the 
corresponding plastic strains, was originally derived 
by Kr6ner [4] and Budiansky and Wu [51 for time- 
independent plasticity and its incremental form was 
first applied by Brown [6] to creep. While plastic strain 
is directly linked to stress in plasticity, the constitutive 
equation in creep also involves the creep rate, in addit- 
ion to creep strain and stress. This additional depen- 
dence makes the application of Equation 5 more 
involved. 

2.2. Relaxat ion  unde r  a c o n s t a n t  total  strain 
Contrary to creep, relaxation is a "strain-free" stress 
process and its incremental self-consistent relations 
have been established by Weng [7]. It was shown that, 
during a time interval dt, the stress and strain redistri- 
bution among the constituent grains are characterized 
by 

da,j = -2#(1  - f l ) ( d ~ -  d~)  - 2#d~ (8) 

de~ = fl(ds~. - d~)  (9) 

where the incremental creep strains were generated 
during dr. To maintain a fixed total strain, the relaxed 
stress of the polycrystal is 

dS~ = - 2 y d ~  (10) 

Keeping the total strain ~0 constant, integrations of 
these equations lead to 

a~(t) = 5~(0) -- 2#(1 -- fl)[s~(t) - ~,~.(t)] 

- 2 # ~ ( t )  (11) 

~ ( t )  = ~ + ~[~,~(t) - ~,~(t)] (12) 

5~(t) = 50(0 ) - 2#g~(t) (13) 

where 5~(0) is the initial stress, related to ~ through 
the isotropic elastic relation. Equation 12 indicates 
that, although the total strain of the specimen is fixed, 
those of its constituent grains, depending on their 
orientations, will continue to increase or decrease. 
Comparison between Equations 11 and 13 show that 
for favourably oriented grains the stress relaxes more 
rapidly than the overall specimen, whereas stress 
relaxation is slower in the less favourably oriented 
grains. 

2.3. Simultaneous creep in torsion and 
relaxation in tension 

When the material is subjected to a constant stress in 
one direction and constant strain in the other, simul- (4) 
taneous creep and relaxation take place. Such a behav- 
iour is interactive. For instance many experiments 
[8, 9] have indicated that when a cyclic torsional strain 
is superimposed upon a constant tensile stress, it may 

(5) lead to a tensile creep acceleration. Due to the avail- 
(6) ability of experimental data we consider here the 

specific case of simultaneous creep in torsion and 
(7) relaxation in tension; other types of mixed loading 

may be analysed in a similar fashion. 
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Now that a~2 and ~ are kept constant, with other 
5~ = 0, the stress and strain redistribution of the 
constituent grains may be obtained by the combina- 
tion of the foregoing considerations. Thus 

a l l ( t )  = an(0) -- 2#(1 -- fi)[e~,(t) -- ~],(t)] 

- E~(t) ( 1 4 )  

au(t)  = a0 - 2#(1 - fl)[e~(t) - ~.(t)] 

( i , j  ¢ 1) (15) 

el,(t) = ei, + fl[g~l,(t) - ~,(t)] (16) 

= + (1 

+ vSg~{l(t ) ( i , j  ¢ 1) (17) 

~ t ( t )  -- E[g',, - - ~ , ( t ) ]  (18) 

where E is the Young's modulus and 5~ the Kronecker 
delta (1 when i = j, and 0 when i ~ j ) .  The change of  
2# in Equation 11 to E in  Equations 14 and 18, and the 
presence of  the last term in Equation 17, are attribu- 
ted to the fact that 522 = 633 ~--- O. 

3. Creep deformation of consti tuent 
grains and slip systems 

We shall restrict our consideration to the high stress, 
low to intermediate temperature range where disloca- 
tion glide, or simply crystallographic slip, may qualify 
as the principal source of creep deformation. The 
creep strain of  a constituent grain is now contributed 
by the time-dependent slip strains of  its slip systems. 
The slip activity of  a slip system initially depends on 
its resolved shear stress v, and, due to both active and 
latent hardening, its creep rate gradually decreases to 
a steady state. Using the simple power law for its 
stress-dependence the steady and transient creep rates 
of, say the kth slip system, may be respectively 
written as [1] 

(:! , (k) 
y = tO'C;" 

( 

(19) 

(k J) ( 
c~ + (1 ~)cos 0 cos q5 ) - - y ~  ( 2 0 )  

l= I  
(k J)  

where ~c, 2, t/, ( and ~ are material constants, 0 and 
(k.t) 
q~ , respectively, the angles between the slip directions 

and slip-plane normals of  the kth and lth systems. 
These material constants, as will be shown later, may 
be determined from two tensile creep tests of the 
polycrystal, one followed by strain recovery. Among 
these, Z characterizes the stress-dependence, or the 
separation of  two creep curves under two different 
stresses, ~c controls the steady creep rate, ( gives the 
magnitude of transient creep, r/controls the decreas- 
ing rate of creep rate, and ~ represents the internal 
back-stress. When ~ = 1, the latent hardening reduces 
to Taylor's [10] isotropic hardening and when a = 0, 
it corresponds to Prager's kinematic hardening [11]. In 
general, its value is less than 1, giving rise to strain 
recovery upon unloading. As the resolved shear stress 

of a slip system directly depends on the local stress 
%(0  of the constituent grain to whch it belongs, its 
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value also continues to change during a creep or 
relaxation process. 

The total creep rate of a slip system is the sum of  the 
steady and transient rates; thus 

d7 ° = (9~ + ~ ) d t  (21) 

Since creep deformation may take place simultaneously 
in all slip systems, the creep strain of  a constituent 
grain is given by 

c ~.~ (k) (k) 
de o = ~ v,jd~ ~ (22) 

k = l  
(k) 

where the summation extends to all n systems, and v,~ 
is the Schmid-factor, or orientation-factor tensor of  
the kth system, given by its unit slip direction b; and 
slip-plane normal n; by 

(k) (k) (k) (k) (k) 
v~ = ½(b, nj + bin;)  (23) 

Similarly at a given time t, the total creep strain of a 
constituent grain is given by 

c ~.~ (k) (k) 
e~(t) = ~ v~7~(t) (24) 

k = l  

Looking back at the "total"  self-consistent relations 
established in the preceding section, it is evident that 
the whole problem of creep and relaxation is now 
crucially tied to the determination of yc(t) for all slip 
systems in all grains. 

4. Determinat ion of the creep strain 
~c(t) of a slip system 

Primarily due to the time-dependence of the resolved 
shear stress v(t) and the coupling nature of creep 
strains in Equations 19 and 20, it is difficult to solve 
analytically for 7c(t) by direct integration. Our objec- 
tive here is to propose a simple computational method 
for such a purpose. 

The resolved shear stress of the kth slip system in 
the pth grain is in general given by 

CO, k) CO,k) CO) 
r = v~ %, (25) 

co) 
where a,j is the local stress of  the pth grain at time t 
and, depending on the problem considered, is given by 
the appropriate self-consistent relation. The Einstein 
summation convention for a repeated index is implic- 
itly adopted in this paper; thus the subscripts i and j 
are to be summed over 1 to 3 in Equation 25. It is now 
necessary to introduce the superscript p to designate a 
specific grain orientation. 

Expressing the creep strain of the polycrystal by 
Equation 7 and further that of  an individual grain by 
Equation 24, we can now use the various self-consistent 
relations derived earlier to write z in terms of its initial 
value z0 and y°. 

Co.k) CO.k) 
(i) Creep at constant 60: With r0 = v 0 60we have, 

from Equations 25 and 5, 

z 0 - 2#(1 - fi) vii vg 
l=1 

= l = l  Vi i  
(26) 



(ii) Relaxation at constant strain ~:  With 5~(0) = 
2g~ U + 26fikk (where # and ). are the Lame' 

(p,k) (p,k) 
constants) and ~o = v~j 5-u(0), one finds from 
Equations 25 and 11 

= r0 - 2 #  v~ (1 - / ~ )  v 0 
/=1 

+ ~ (q'l)v/j y¢ (t)J (27) 
q=I l=1 

(iii) Creep at constant 612 and relaxation at con- 
O,,k) 

stant gll (other 5~ = 0): With #H(0) = E~n, % = 
(p,k) . . . .  (p,k) _ (p;k) _ 

vH 0-11(0) + v12 ai2 + v21 a21, and Equation 14, 15 
and 25, the resolved shear stress is given by 

(p~k} (t) (p,k} Co, k} 
= C 0 -- 2#(1 -- fl) V 0 

(,9,l) (p,/c) ( t )  1 (q,l) 
x v U ~- vu ~ (0 

q=l  l=1 

e i >"(o (28) 
N 1)11 q=l  1=1 

Lo,k) 
With the proper , (t), the creep rate of the kth slip 
system in the p th  grain depends only on its initial 
resolved shear stress, and the creep strains of all slip 
systems. We rewrite Equations 19 and 20 as 

}~)(t)  = (,~ + ,I¢1 ~ ) ( t )  
(k,l) (k,l) (p,l) 

- r/ [~ + (1 - a) cos 0 cos qS] 7°(t), 
/=1 

(29) 

where the grain runs from p = 1, 2 . . . ,  to N and in 
each grain the slip system goes from k -- 1, 2 . . . .  to 
n. Equation 29 in effect represents a system of n N  
nonlinear, coupled differential equations in the form 
of 

~ ) ( t )  ~,k) (q.c/) = F ( % ,  7 (t); 

q = l , . . . , N ,  a n d l  = 1 . . . .  ,n)  (30) 

To illustrate the proposed method let us first con- 
sider the simple function with only one variable 7, 

9 = f(7). (31) 

Referring to Fig. 1, suppose that 7A at time tl is known 
and we wish to find 7B at time t2, such that the time 
difference At = t2 - tl is not necessarily small. The 
strain 7B can be obtained approximately by a simple 
iterative process. We first set 7 = 7A in Equation 31 to 
compute the rate and find 71 as 

71 = ])A At + 7A (32) 

This 7~ is clearly greater than the true 7B and, with 
which, a smaller creep rate ~)~, may be computed from 
Equation 31 (corresponding to the rate at point 1'). 
We then find the strain from the second iteration as 

72 = I(])A Or- ~1) A t  n L 7A (33) 

and this also gives us the creep rate ~2. = f(Y2). 
Repeating this iteration we have 

7m = ½(gA + ~(m-0)At + 7A (34) 

7 , A ~ {  (?"+?''} 

._;5,_ . . . . . . . . . . . . . . . . . . .  '_..z------- 

B 

0 tl t~ 
Time, t 

Figure l Schematic illustration of  the iterative method.  

after m iterations. Usually after five iterations the 
obtained 7 would be sufficiently close to the 7B cal- 
culated incrementally. 

Now returning to our Equation 30, we note that 
7 c = 0 initially for all slip systems and these serve as 
the initial points. Then the initial creep rates may be 
computed from Equation 30 or 29, for all systems in 
conjunction with the appropriate c0(t). Applying 
Equations 32 to 34 for each slip system, the value of 

(~)(tl), at time tl, may be obtained approximately 

after some iterations. We then use these ~ 9 ( t  1) values 

as the new starting points to repeat the same iter- 

ative process for ~9(t2). Because creep rate decreases 
monotonically, an overestimate in 7c(tl) would 
subsequently lead to an underestimate in the incre- 
ment, 7c(t2) - 7~(tl). Such a self-adjusting nature, as 
will become evident in our numerical results, further 
improves the accuracy of  this method over the entire 
curve. 

The proposed iterative scheme of  course depends on 
a stable convergence. For  the transient and steady 
creep, as the creep rate decreases monotonically such 
a convergence is always assured. During the steady 
state when the creep rate remains constant, this 
method is accurate without any iteration. However 
if the creep rate monotonically increases as in the 
tertiary creep, such a condition is assured only when 
(gA + 9B) /2  ~ (~)B - -  7A) /k t .  

5. Creep and relaxation of an a luminium 
alloy, and the accompanied stress 
redistr ibution 

It is now of interest to apply this new method to 
predict the creep and relaxation behaviour of a practi- 
cal system, and to compare the results with the orig- 
inal incremental calculations and experimental data. 
To this end we choose the 2618-T61 aluminium alloy, 
which has been systematically tested at 200 ° C by Ding 
and Findley [12] and Lai and Findley [13]. 

Aluminium has a face centred cubic crystal struc- 
ture; it has four {1 1 1) slip planes and three (1 1 0) 
slip directions on each plane, resulting in a total of 
twelve slip systems in each grain. The polycrystal 
model is chosen to consist of seventy-five different 
grain-orientations. This model, originally used in [1], 
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12.5 

I0.0 

"~ T5 / /  

, , 

0 20 40 60 80 I00 
Time,.~ (h) 

Figure 2 Derivation of micro parameters by the simulation of tensile 
creep and strain recovery. (x) Total method, ( - - - )  incremental 
method, (o) Ding and Findley [12]. 

is reasonably isotropic; as judged from the generated 
creep strain components, the maximum deviation 
from isotropy is about 5%. Equation 30 involves there- 
fore a total of 75 x 12 = 900 nonlinear, coupled dif- 
ferential equations. With these chosen orientations the 
six components of  orientation-factor tensor v u for the 
slip systems, totalling 6 x 900 = 5400, may be 
stored in the computer for ready use. 

Equation 29 involves five parameters; x, q, ~, 2 and 
c~, on the microscales, and these may be determined by 
an inverse simulation of  two tensile creep and one 
strain-recovery curves. The two tensile creep curves, 
tested at 6"11 = 82.74MPa (12 x 103p.s.i) and 
137.21 MPa (19.9 x 103p.s.i.), and the corresponding 
recovery curves [12] are reproduced in Fig. 2. To be 
more accurate, we used the incremental method, 
which was proven to be reliable, to determine these 
micro properties. (As will become evident the values 
derived by the total method should not differ signifi- 
cantly.) With E = 65 GPa and # = 23.8 GPa, result- 
ing in v = 0.366, at the tested temperature [12], these 
simulations lead to x = 1.935 x 10 -1° , 2 = 2.70, 
q = 0.20, ~ = 1.168 × 10 -8 , and ~ = 0.17, where 
stress, strain and time are in the units of MPa, m m -  1 

and h, respectively. These parameters were then used 
in the newly introduced total method to compute the 
corresponding creep and strain recovery. The last 
point in creep was taken as the first point in the 
recovery calculations, then setting #,j = 0. With the 

~ c  ~ c  

5 

~- 3 

.----., 

'~ 2 

I 
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~,=82.74 MPa ~ ~,= 0 
~ =  41.37 MPa ~.';/" -o~,~,. ~ = 0  

- 2'0 4PO -6PO 8'0 
Time, t(h] 

I00 

190 

180 

170 

"" 160 

~,=0.297o 
150 

, ~ 4~5 0 15 30 
Time, t (rain) 

60 

Figure 4 Theoretical predictions of tensile stress relaxation. (x) 
Total method, ( - - - )  incremental method, (o) Lai and Findley [13]. 

cross sign x marking the selected points in this new 
method, the theoretical curves by both schemes are 
displayed in Fig. 2, along with the test data. While 
both methods clearly show the ability to simulate the 
observed behaviour, it is also evident that the results 
of this simple method follow closely those of the incre- 
mental one. 

We further used these parameters to predict the 
creep and strain recovery under combined tension 
and shear, at ~11 = 82.74MPa (12 x 103p.s.i.) and 
~12 = 41.37 MPa (6 × 103 p.s.i.). The predicted results 
by both methods and the experimental data are shown 
in Fig. 3. Though the shear component of the recovery 
strain appears to be overestimated, the theoretical 
results in the other cases appear to be in accord with 
experiments. 

Ding and Findley [12] did not examine the relaxa- 
tion behaviour in the same study, but such tests were 
carried out earlier by Lai and Findley [13]. As the 
chemical compositions of these two lots of  aluminium 
alloy are slightly different, and the material used in 
[12] was received 14 years later, their creep behaviour 
also appear to be somewhat different. The material 
properties in [13] were derived previously as [1]: 

= 2.52 × 10 -I° , 2  = 4.12,~/ = 0.10,~ = 1.09 x 
10 -7,  and ~ = 0.28, where stress, strain, and time are 
in the units of MPa, 10-4mm 1, and rain, respect- 
ively. Using these constants, the predicted stress 
relaxation under a constant tensile strain ~1~ = 
0.29% (other ~0 = 0) are given in Fig. 4, along with 

Figure 3 Theoretical predictions of creep strain and strain 
recovery under combined tension and torsion. (x) Total 
method, ( - - - )  incremental method, (o) Ding and Findley 
[12]. 
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150 = ~  

• O o 

\ x  0 0 o 
~ o 

140 . . . . .  : o o 

0 30 60 90 i20 
Time, t(min) 

Figure 5 Theoretical predictions of simultaneous creep and relaxa- 
tion. (x) Total method, ( - - - )  incremental method, (e, o) Lai and 
Findley [13]. 

the test data. The same material was also tested 
under  a combined ~12 = 55.5MPa (8.05 x 103p.s.i.) 
and ~H = 0.25% (other 60 = 0), and the measured 
shear creep and tensile relaxation are reproduced in 
Fig. 5. Also included in this figure are the theor- 
etical calculations of combined creep and relaxation. 
Though the relaxation behaviour in both cases appear 
to be overestimated, such a deviation, in view of the 
overall agreement and the complicated nature of the 
problem, seems to lie within a tolerable range. 

The problem of stress redistribution among the 
constituent grains, as is evident from Equations 5, 11, 
or 14 and 15, is directly related to the creep strain 
distribution. Indeed it is fundamentally interesting to 
see how heterogeneous creep deformation takes place 
in a polycrystalline aggregate. To illustrate such a 
heterogeneity, we depicted in Fig. 6 the tensile creep 
strains of four selected grains, whose orientations are 
shown in the inset of stereographic projections, under 
~H = 82.74 MPa. Also included here for reference is 
the creep curve of the polycrystal. While grain orienta- 
tions 1 and 2 are favourable for deformation, grain 
orientations 3 and 4 are not. As a consequence, 
though their stresses are initially equal, those of the 
former group, as shown in Fig. 7, continue to decrease 
whereas those of the latter keep increasing. Under the 
tensile relaxation gH = 0.29%, the corresponding 

88~- . . . . . . . . . .  
= Creep under ~,=82.74MPa ~...---~ 4 I 

86 

Creep under ~,=82.74 MPa 
4 / z 

312 / .-'- .~. /  ._.__._I J * -J  j j j j j j j  I 34 

1 ' / /  4 

O [  ___~ I t I 

-g 

0 10 20 30 40 50 
Time,~(h) 

Figure 6 Creep-strain distribution among constituent grains during 
a tensile creep. 

creep deformation and stress distribution are depicted 
in Figs 8 and 9, respectively. The heterogeneous 
nature of creep deformation and stress relaxation 
among the constituent grains are again vividly dis- 
played, the average of their behaviour giving rise to 
that of the aggregate. 

Despite these generally satisfactory results one must 
bear in mind that the present study has taken the stress 
and strain of each grain orientation to be uniform, and 
that it has assumed the glide motion of dislocations, 
modelled as crystallographic slip, to be the sole source 
of creep strain. As grain deformation is usually hetero- 
geneous and there are many other possible mechan- 
isms of creep, these assumptions may need some qual- 
ifications. Heterogeneous deformation in a grain 
usually takes place near the grain boundary; it is 
primarily the result of compatibility accomodation 
from one grain to the other and of the irregular grain 
shape. While it is desirable to account for the variation 
of stress and strain within a constituent grain, it is 
computationally difficult. Moreover, since the fluctua- 
tion of grain shape or size, and the problem of com- 
patibility, actually occur with equal probability to all 
grain orientations, it becomes reasonable to take the 
orientation of a grain as the determining factor lead- 
ing to the stress and strain inhomogeneity from one 
grain to the other. The derived uniform stress and 
strain therefore should be interpreted as the averaged 
values over the heterogeneity of each grain orienta- 
tion. 

0 10 20 30 40 50 
Tirn%t(h) 

Figure 7 Stress redistribution among constituent grains 
during a tensile creep. 
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Figure 8 Creep-strain distribution among constituent grains during 
a tensile relaxation. 

Although there are several mechanisms which may 
contribute to the creep strain of a polycrystal, their 
relative contributions, as indicated for instance in 
Frost and Ashby's deformation mechanism maps [14], 
depend on the considered stress and temperature 
state. At high stress and lower temperature the glide 
motion of dislocation is indeed the main source of 
creep strain. But as the temperature increases and 
especially at a low stress, Nabarro-Herring creep and 
Coble creep may become more dominant. Grain- 
boundary sliding is also easier at higher temperature. 
The effects of these latter mechanisms to the creep and 
relaxation behaviour of a polycrystal apparently have 
not been considered in the present study; the suggested 
method therefore should be used in the high stress and 
lower temperature range. 

Acknowlegement 
This work was supported by the US National Science 
Foundation through Grant MEA-8317887. 

190 Relaxation under ~,,=0.29% 

~.180 

~. 170 ~ 4  

. . . . . . . . . . . . . .  -I 3 

160~" .-x v,2, 
"~t 

150 1~5 3~0 4; 6~0 - -  
Time, e(min) 

Figure 9 Stress redistribution among constituent grains during a 
tensile relaxation. 

References 
l. G. J. WENG, J. Appl. Mech. 48 (1981) 41. 
2. Idem, Acta Metall. 31 (1983) 207. 
3. J. D. ESHELBY, Proc. R. Soc. London, A241 (1957) 376. 
4. E. KRONER,  Acta Metall. 9 (1961) 155. 
5. B. BUDIANSKY and T. T. WU, Proceedings of  the 4th 

US National Congress of  Applied Mechanics (ASME, New 
York, 1962)p. 1175. 

6. G. M. BROWN, J. Mech. Phys. Solids 18 (1970) 367. 
7. G. J. WENG, J. Appl. Mech. 48 (1981) 779. 
8. W. A. WOOD and S. McK. COUSLAND, Proc. Inst. 

Mech. Eng. 178 (1963) 3-25. 
9. M. RONAY, J. Inst. Met. 94 (1966) 392. 

10. G. I. TAYLOR, ibid. 62 (1938) 307. 
11. G. J. WENG, Int. J. Solids Struct. 15 (1979) 861. 
12. J. L. DING and W. N. FINDLEY, J~ Appl. Mech. 51 

(1984) 125. 
13. J. S. LAI and W. N. FINDLEY, ibid. 49 (1982) 19. 
14. H. J. FROST and M. F. ASHBY, "Deformation Mech- 

anism Maps" (Pergamon Press, Oxford, 1982). 

Received 30 December 1985 
and accepted 4 September 1986 

1396 


